In vitro interaction of the human immunodeficiency virus type 1 Tat transactivator and the general transcription factor TFIIB with the cellular protein TAP.
نویسندگان
چکیده
We have reported the molecular cloning, expression, and characterization of a human cellular protein, TAP, which possesses a strong transcriptional activation domain and binds the human immunodeficiency virus type 1 Tat transactivator in vitro and in vivo (L. Yu, Z. Zhang, P.M. Loewenstein, K. Desai, Q. Tang, D. Mao, J.S. Symington, and M. Green, J. Virol. 69:3007-3016, 1995). Here we show that TAP binds the general transcription factor TFIIB. Furthermore, we delineate the binding domains of TAP, Tat, and TFIIB, as well as measure the strengths and specificity of these protein-protein interactions. TAP binds strongly to Tat, with a Kd of (approximately 2 to 5) x 10(-7) M. The Tat activation region contains a 17-amino-acid conserved core domain which is the single contact site for TAP. Single-amino-acid substitutions within the Tat core domain inactivate transactivation in vivo and in vitro and greatly reduce binding of Tat to TAP in vitro. TAP binds strongly to TFIIB, with about the same Kd as for Tat. The interaction between TAP and TFIIB requires a sequence near the carboxy terminus of TFIIB which is also required for binding the strong acidic activator VP16. The contact sites for Tat and TFIIB map within the TAP C-terminal region, which contains the TAP activation domain. These combined results are consistent with the hypothesis that TAP is a cellular coactivator that bridges the Tat transactivator to the general transcription machinery via TFIIB.
منابع مشابه
Functional and Physical Consequence of Human Immunodefficiency Virus Transactivator TAT Interaction with Human Cell Cycle Regulator p53
Human immunodeficiency virus (HIV) transactivator Tat is a potent activator of both viral and cellular genes. Tat has also been implicated in the development of AIDS-related malignancy. Here, we show that Tat physically and functionally is able to sequester the cell cycle check point protein p53. This sequestration results in non-functional promoter activity of cyclin-dependent kinase/cyclin i...
متن کاملInteraction of human immunodeficiency virus type 1 Tat with the transcriptional coactivators p300 and CREB binding protein.
Human immunodeficiency virus type 1 (HIV-1) encodes the transactivator protein Tat, which is essential for viral replication and progression to disease. Here we demonstrate that transcriptional activation by HIV-1 Tat involves p300 or the related cellular transcriptional coactivator CREB binding protein (CBP). Tat transactivation was inhibited by the 12S form of the adenovirus E1A gene product,...
متن کاملHuman immunodeficiency virus type 1 tat protein activates transcription factor NF-kappaB through the cellular interferon-inducible, double-stranded RNA-dependent protein kinase, PKR.
The transactivator protein of human immunodeficiency virus type 1 (HIV-1) (Tat) is a powerful activator of nuclear factor-kappaB (NF-kappaB), acting through degradation of the inhibitor IkappaB-alpha (F. Demarchi, F. d'Adda di Fagagna, A. Falaschi, and M. Giacca, J. Virol. 70:4427-4437, 1996). Here, we show that this activity of Tat requires the function of the cellular interferon-inducible pro...
متن کاملImpact of Tat Genetic Variation on HIV-1 Disease
The human immunodeficiency virus type 1 (HIV-1) promoter or long-terminal repeat (LTR) regulates viral gene expression by interacting with multiple viral and host factors. The viral transactivator protein Tat plays an important role in transcriptional activation of HIV-1 gene expression. Functional domains of Tat and its interaction with transactivation response element RNA and cellular transcr...
متن کاملTranscriptional activation in vitro by the human immunodeficiency virus type 1 Tat protein: evidence for specific interaction with a coactivator(s).
The Tat protein encoded by human immunodeficiency virus type 1 is a strong transcriptional activator of gene expression from the viral long terminal repeat and is essential for virus replication. We have investigated the molecular mechanism of Tat trans-activation by using a cell-free transcription system. We find that the trans-activation domain of Tat, amino acid residues 1-48 [Tat-(1-48)], c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 69 5 شماره
صفحات -
تاریخ انتشار 1995